Senin, Agustus 14, 2017

Penurunan Tekanan UAP LARUTAN

author photo
Penurunan Tekanan UAP LARUTAN ~ Pernahkah kamu melihat proses terjadinya penguapan? Pada peristiwa penguapan terjadi perubahan dari zat cair menjadi gas. Jika zat cair dimasukkan ke dalam suatu ruangan tertutup maka zat tersebut akan menguap hingga ruangan tersebut jenuh. Pada keadaan ini proses penguapan tetap berlangsung dan pada saat yang sama juga terjadi proses pengembunan.

Laju penguapan sama dengan laju pengembunan. Keadaan ini dikatakan terjadi kesetimbangan dinamis antara zat cair dan uap jenuhnya. Artinya bahwa tidak akan terjadi perubahan lebih lanjut tetapi reaksi atau proses yang terjadi masih terus berlangsung. Tekanan yang disebabkan oleh uap jenuh dinamakan tekanan uap jenuh.

Besarnya tekanan uap jenuh dipengaruhi oleh jumlah zat dan suhu. Makin besar tekanan uap suatu cairan, makin mudah molekul-molekul cairan itu berubah menjadi uap. Tekanan uap suatu larutan dapat diukur dengan alat manometer merkurium. Perhatikan Gambar dibawah.

Penurunan Tekanan UAP LARUTAN, Gambar Manometer merkurium
Gambar Manometer merkurium

Pada alat tersebut setelah larutan dimasukkan dalam labu, semua udara dalam pipa penghubung dikeluarkan melalui pompa vakum. Jika keran ditutup, maka uap yang ada dalam pipa penghubung hanyalah uap dari pelarut larutan tadi sehingga uap itu disebut tekanan uap larutan tersebut. Semakin tinggi suhu cairan semakin banyak uap yang berada di atas permukaan cairan dan tekanan uap yang terbaca semakin tinggi.

Untuk mengetahui penurunan tekanan uap maka pada tahun 1880-an kimiawan Perancis F.M. Raoult mendapati bahwa melarutkan suatu zat terlarut mempunyai efek penurunan tekanan uap dari pelarut. Apabila pada pelarut murni kita tambahkan sejumlah zat terlarut yang tidak mudah menguap, apa yang akan terjadi?

Baca Juga : FAKTOR-FAKTOR YANG MEMPENGARUHI KELARUTAN

Untuk mengetahui penurunan tekanan uap maka pada tahun 1880-an kimiawan Perancis F.M. Raoult mendapati bahwa melarutkan suatu zat terlarut mempunyai efek penurunan tekanan uap dari pelarut. Apabila pada pelarut murni kita tambahkan sejumlah zat terlarut yang tidak mudah menguap, apa yang akan terjadi?

Penurunan Tekanan UAP LARUTAN,Gambar Partikel-partikel Pelarut Murni dan Larutan
Gambar Partikel-Partikel Pelarut Murni dan Larutan

Dari gambar di atas dapat kita lihat bahwa jumlah partikel pelarut pada pelarut murni (Gambar A) di permukaan lebih banyak dibandingkan pada larutan (Gambar B). Partikel-partikel pada larutan lebih tidak teratur dibandingkan partikel-partikel pada pelarut murni.

Hal ini menyebabkan tekanan uap larutan lebih kecil daripada pelarut murni. Inilah yang dinamakan penurunan tekanan uap jenuh. Selisih antara tekanan uap murni dengan tekanan uap larutan jenuh dapat dituliskan secara matematis seperti berikut.

ΔP = P0 – P

Keterangan:
ΔP = penurunan tekanan uap
P0 = tekanan uap pelarut murni
P = tekanan uap jenuh larutan

Bagaimana hubungan penurunan tekanan uap dengan jumlah partikel? Menurut Raoult, besarnya tekanan uap pelarut di atas suatu larutan (P) sama dengan hasil kali tekanan uap pelarut murni (P0) dengan fraksi mol zat pelarut dalam larutan (xB).

P = xB . P0

Persamaan di atas dikenal dengan hukum Raoult. Hukum Raoult hanya berlaku pada larutan ideal dan larutan tersebut merupakan larutan encer tetapi pada larutan encer yang tidak mempunyai interaksi kimia di antara komponen-komponennya, hukum Raoult berlaku pada pelarut saja. Adapun banyaknya penurunan tekanan uap ( ΔP ) sama dengan hasil kali fraksi mol terlarut (xA) dan tekanan uap pelarut murni (P0). Pernyataan ini secara matematis dapat dituliskan seperti berikut.

ΔP = xA . Po

Keterangan:
xA = fraksi mol zat terlarut
xB = fraksi mol zat pelarut

Contoh
Fraksi mol urea dalam air adalah 0,5. Tekanan uap air pada 20°C adalah 17,5 mmHg. Berapakah tekanan uap jenuh larutan tersebut pada suhu tersebut?
Penyelesaian:
Diketahui : xA = 0,5
P0 = 17,5 mmHg
Ditanya : P …?
Jawab : ΔP = xA ⋅ P0
= 0,5 ⋅ 17,5 mmHg
= 8,75 mmHg
P = P0 – ΔP
= 17,5 mmHg – 8,75 mmHg
= 8,75 mmHg

Penurunan Tekanan UAP LARUTAN Menurut Ahli Kimia


Menurut ahli kimia asal Prancis, yaitu Francois Raoult dikatakan bahwa

“tekanan uap jenuh larutan sama dengan fraksi mol pelarut dikalikan dengan tekanan uap jenuh pelarut murni”.

Pernyataan ini dikenal dengan Hukum Raoult, yang secara matematik dapat dirumuskan sebagai berikut :

P= P˚ x Xp
Keterangan :

P = tekanan uap jenuh larutan
P˚ = tekanan uap jenuh pelarut murniXp = fraksi mol zat pelarut

Dengan adanya zat pelarut, maka partikel pelarut menjadi lebih sedikit yang menguap, sehingga memberi tekanan uap jenuhlarutan (P) lebih rendah daripada tekanan uap jenuh pelarut (P˚). Dengan demikian terjadi oenurunan tekanan uap larutan yang sering disebut dengan penurunan tekanan uap (∆P).

Penurunan tekanan uap (∆P) dapat dirumuskan sebagai berikut :

∆P = P˚ – P

Hubungan antara penurunan (∆P) dengan fraksi mol zat terlarut (Xt) dapat dirumuskan sebagai berikut :

P= P˚ x Xt

Coba kalian jelaskan bagaimana rumus tentang penurunan tekanan uap diperoleh! (Gunakan dua persamaan sebelumnya dan Xt + Xp = 1)

Tekanan uap dari benzena murni pada suhu 25˚ adalah 95,1 mmHg dan tekanan uap, uap toluena murni pada suhu yang sama adalah 28,4 mmHg. Apabila suatu larutan terdiri atas toluena dan benzena yang memiliki fraksi mol sama, bagaimana cara memperoleh benzena murni? Cara memperolehnya dengan distilasi. Manakah yang lebih dulu menguap antara benzena dan toluena? Perhatikan penjelasan berikut!

Tekanan uap larutan murni ditentukan terlebih dahulu, perhitungannya sebagai berikut.
Xbenzena = Xtoluena
Xbenzena + Xtoluena = 1
Xbenzena = Xtoluena = 0.5

A. TEKANAN UAP TOTAL LARUTAN MURNI


Pbenzena = Xbenzena x P˚benzena
= 0.5 x 95.1 mmHg = 47.6 mmHg

Ptoluena = Xtoluena x P˚toluena
= 0.5 x 28.4 mmHg = 14.2 mmHg

Ptotal = Pbenzena + Ptoluena
= 47.6 mmHg + 14.2 mmHg
= 61.8 mmHg

B. FRAKSI MOL MASING MASING ZAT PADA KESEIMBANGAN


Xuap benzena = 47.6mmHg/61.8mmHg = 0.77
Xuap toluena = 14.2mmHg/61.8mmHg = 0.23

Tekanan uap murni benzena (95.1 mmHg pada suhu 25˚C) lebih besar daripada tekanan uap murni toluena (28.4 mmHg pada suhu 25˚C). Dalam larutan benzena-toluena, benzena merupakan komponen yang lebih mudah menguap dibandingkan toluena.

Semula Xbenzena = Xtoluena = 0.5, kemudian setelah mencapai keseimbangan dengan uap larutan ternyata Xbenzena dalam bentuk uap bertambah menjadi 0.77. Jadi, suatu larutan ideal pada keseimbangan tekanan uap, zat yang mudah menguap akan menghasilkan jumlah uap yang lebih banyak daripada zat lain dalam larutan.

Rangkaian sederhana dengan cara penguapan dan kondensasi dapat digunakan untuk memperoleh benzena murni (Gambar dibawah). Berdasarkan hasil perhitungan diatas, tekanan uap, dan fraksi mol benzena lebih besar daripada toluena, sehingga benzena lebih mudah menguap. Uap benzena mengalir pada kolom fraksinasi kemudian mengalami kondensasi dan diperoleh benzena murni.

distilasi bertingkat campuran benzena-toluena,Penurunan Tekanan UAP LARUTAN
Distilasi Bertingkat Campuran benzena-toluena

This post have 0 komentar


EmoticonEmoticon

Next article Next Post
Previous article Previous Post